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The problem of rotation of a rigid body about 1lts center of inertia in pre-
sence of steady cyclic rotations within that body without however influencing
its mass distribution, was first stated and investigated by Volterra. 1ln a
number of papers over the period 1895 — 1899, and the basic results are given
in his book "On the Theory of Latitude Variation" [1]. He proves the fund-
amental integrabllity of equations for the direction cosines of the body, in
terms of elliptic funcilons of time. A particular case of Volterra's problem
was investigated in more detail in the paper by Ena [2], in which he examines
the motion of an asymmetric rigid body about one of the principal axes of
inertia; a steady internal rotation of the body takes place, analogous to
the uniform rotation of a flywheel.

In the present paper we investigate another particular case of Volterra's
problem, when the body in question has a dynamic axial symmetry, and contains
inside 1t a system of flywheels, rotating with velocities constant with re-
spect to the body. The problem of motion of a body when the flywheels rotate
with velocities constant with respect to inertial space, can also be reduced
to the present case. We also assume that the total kinetic momentum of the
system 1is constant during the motion, 1i.e. external perturbatlions are absent.
Following the analysis of equations of the problem, a geometrical represen-
tation of the motion 1s given, possible types of motion of the body are shown
and their dependence on the parameters of the system and on the lnitial con-
ditions, 18 established. It 1s also shown, that the trajectory of the axis
of symmetry describes, on the surface of the unlt sphere, looped curves ana-
logous to those met in Lagrange's problem.

1, Initial relationships. Let a system of »n flywheels be situated
within the frame of the carrying body, and let thelr axes be fixed in the
frame and defined 1n terms of direction cosines a,ByYx (where Xk denotes
the kth flywheel) relative to the principal xyx-axes of the frame. Then,
assuming that the moments of inertla of the body (together with the flywheels)
relative to its principal axes x, y and 2z are 4, B, and (C , respec-
tively, and that the projections of the corresponding angular momenta of the
flywheels on those ax;s are H,, H, and H,, we can write the equations of
conservation of total angular momentum as follows:
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Aw, + H, = Lsin ¢sin ¥, Bwo, + H,= Lcospsin ¢
Cw,+ H, = Lcos® (1.1)

n n n
Hx=2 dek, HU=Z HkBkv HZ=Z Hka (Hy =11 Q)
=1 k=1 k=1
Here I, 1s the moment of inertia of the kth flywheel, Q, is 1ts angular
velocity relative to the body, w,w,w, are the projections of the angular
velocity vector on its principal axes, while ¢,{} and ‘w are Eulerilan
angles, defining the position of the x, y and =2z -axes relative to flxed
gn{~axes, in which the (-axis coincides with the vector of total kinetic
momentum L of the system. Replacing in (1.1) the angular velocitles with
the corresponding expressions in terms of Euler angles and thelr derivatives
and solving 1t with respect to these derivatives, we arrive at

(p.z[%__(s%!’_i_oos (P)]Lcosﬁ_l_ cot ﬁ(—sm(p—{— coscp) =
(

0’=(% )Lsm'&sm(pcoscp (i—coscp—ism(p)

= (T ) L (G sine + cose)

This system can be further integrated in two particular cases of rotation
of the flywheels. First of them, considered initially by Volterra [1], cor-
responds to the case when the velocitles of rotation of the flywheels are
maintained constant with respect to the body, i.e. H,= const , and conse-
quently, H,, H,, H,= const . The other case for which exact integration
of (1.2) is possible, is characterized by the fact, that the absolute velo-
clties of rotation of the flywheels about their sxes, are constant.

B

To find the necessary integrals for each of these cases, we shall write
the system of Volterra's dynamic equations for our system [ 3]

Aog + (C — B) oo, + 2‘, Ll Qo + Qi (0,76 — 0,B)] = 0

=1

Bo, + (A—C) 0,0, +Z L 19 B + O (@, —0m)]1 =0 (1.3)

k=1
n
Co,; + (B— A) 00, + 2 I [Qx' 1k + Qp (0B — 0. 3] =0
k=1
and the equatlons of rotation of the flywheels
I (Qy + o o 4 0, By + @, 7x) = my (1.4)
Here m, 1is the angular momentum at the shaft of the kti. flywheel. Assum-

ing now that 0,= ccnst , multiplying the equations of (1.3) by w,, w, and
w, , respectively, and adding them, we obtain the following integral
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2 Awg? +1/; Boy® - /3 Coo,® = const (1.5)

In the second case it is enough to put my= 0 in (1.%), after which,
performing operations analogous to the above, it 1is easy to obtain, from

(1.3), the integral n
Vs A@,? + Yy Bay2 4 Yy Co,2 — Vg D) T (0,0x + 0Bx + @,75)? = const (1.6)
k=1

It can easily be shown that {1.6) 1s an energy integral. Indeed, if we
write the expression for kinetic energy of the system in the form [3]

T == 1,'2 :10)x2 + 1/2 l;(l:)y2 + 1/2 Cﬁ)z‘z "f"'

T

+ 12 2 T [ + 29 (0a0 -+ 0,8k + 0,75)] (1.7)
k=1
and take into account the fact that when m,= 0 then from {1.%) follows
Ty (Q 4 0.2 + 0,8 + ©,7%) = hx = const (1.8)

then we shail obtaln the rollowing expression for T :

n n
» s B2
2T = wa2 + -Bmy?‘ + ('(‘)22 - 2 Ik (wxak + myBk + szk)z + 2 —11;:— (1‘9)
k=1 k=1
which differs (rom the integral (1.6) by a constant term.

Using (1.8) we can represent the vector H(#,H,H,) for the given type of
rotation of the flywheels, in the form

n
H=Dhy— G0 (1.10)
k=1
where tensor @ 1is specified by the matrix of its components along the prin-
: E Tyoy® E TyouB Z Ty
l
G = | 2B S LB > IiPyre }
i' 2 Ty oty S LB 2 Iy |

where the summation under the £ sign 1is performed from 1 to »n . Then,
the law of conservation of angular momentum of the system can be written as

cipal axes

(1.11)

(8—-G)-m+2 he = L (1.12)

K1
where € 1s the inertia tensor of the body with the flywheels, defined on
the principal axes by 1ts components 4, pF and ¢ .

Each of Equations (1.12) will contain in 1its projections on the principal
axes, all three components of the vector w . Consequently, in order to
obtain from (1.12) three scalar equations each containing one component of
@ , we must make use of another x'v’z’ coordinate system, rotated with
respect to the principal axes of the body, The matrlx of rotation of xyz-
axes to x'y’z’-axes can be obtained in a manner identical to that, used to
determine the principal axes of inertia of the body. We should note, that
in the system of xyz-axes which may be called quasi-principal axes of the
body, the form of (1.12) will be analogous to that of (1.1). Physical mean-
ing however of the parameters 4, P and ( together with #,, # and #,
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will be altered somewhat. The coordinate transformation xyz - x'y’z’
results in the expression for kinetic energy assuming 1ts normal form, in
which the products of various components of the vector of angular velocity
w of the body, do not appear.

Both of the above cases can be described by the system of equations of
the form (1.2) and possess the integral of the form (1.5). Assumimg the
Eulerian angles to be the basic varilables defining the position of principal
(or quasi-principal) axes of the body relative to the Egn{-axes and replacing
the constants X,, #, and #, with R , u and .v according to the following
relationships,

Hx=ARsinpsinv, H,=BRcospsinv, H,=CRcosv
R =[(H.] A+ (H,|B)*-+ (H,[C}*1"

we can write (1.2) as

(p'=[ ! (sinhp + cOs'z(p)]Lcosﬂ—i—R[sinv cot & cos (¢ — p) — cosv]

Cc "\ 4 B
{}':(17—%)Lsinﬁsincpcoscp-{—l?sinvsin (p—w) (1.13)
\p'=(5i';:q’ + coitp‘)L__Rsmv_____cﬂss(&;u)

and 1ts integral (1.5), as

[ — (5 4 52| Lsinv ¢ +

+ 2R [sin vsin ® cos (¢ — p) -+ cos v cos @] = const (1.14)

Next, limiting ourselves to the case when the carrier has axial dynamic
symmetry, i.e. 4 = B, we can write (1.13) and its integral (1.1%), as

(1.15)
cp'=(% —%)Lcosx‘}-l—R[sinv cot ¥ cos (¢ —p)— cosv]
. . . . L . cos(@—)
¥ = R sin vsin (9 — p), P ——Z—Rsmv-—sm—

a sin?® + sin vsin ¥ cos (p —p) + cosveos ¥ = ¢

(a=LJ2R (1/C—1/A)) (1.16)
Here o 18 the constant of integration. Using (1.16) we can obtain

¥ = Ei—g—ﬁ—]/sinzvsinﬂﬁ—(c—asinzﬁ—cosvcosﬁ)‘l (1.17)

which can be represented as

d 9\2
(S5—) = —RHh(® () (1.18)
Here, functions f, (#) and f, (#), which play a major part in the following
investigation are, obviously (1.19)

f1 (@) = asin® % + cos (& — v) — ¢, f2(3) = asin® ¥ +cos (4 +v) —¢
We see at once from (1.18), that motion of the body in the U -direction
i1s possible only within those ranges of values of the angle ¢ , 1n which
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the functions f, and [, have opposite signs. Circles on the unit sphere
on which either Jf,= 0 or J.= O , represent the boundaries of these ranges.

2. Investigation of the /i (%) and f,(0) funotions. From (1.19) we see,
that between f, and f, followlng relatlénships exist (2.1)

fi(8) = fa (—9), fi (8, v) = fo( D, —v), (9, a o= —fz (. — 8, —a, —c)

We also see that the end-points of the interval 0.< <, f, anda 7,
have the same values, while their derivatives with respect to @ , are of
the same magnitude, but opposite sign. The relationship (2.1) shows, that
it is sufficient to investigate only one of these functlons over the inter-
val g < ¥ <n. Using (1.16), we can represent Jf, and [/, as 2.2)

f1 = sinvsin €& [1 — cos (p — p)], fo= —sinvsin®d [1 + cos{p —p)]

from which we see, that on the boundaries of the reglons of possible motion
where Jf, or [f, becomes equal to zero, o = u + kr (where % is an 1nteger;.
Apart from that, (2.2) implies that if the same function (either S, or [,
becomes equal tc zero on both circles bounding the reglon of possible motions
of the axis of the body, then the motlion will be oscillatory with respect to
the angle o , while, if oh one of the circles Jf,= O and on the other
Js= O , then the motion will be gyratory in ¢ . During the motion of the
z-axis from one boundary, circle to the other, angle ¢ will change by = .
From the relation f, — f, = 2 sinvgsin® 1t follows that the curves f, (9) and
fs (8) 1ntersect only at ‘Yhe end-points of the interval 0 < % <xn, forming a
tlosed, snaill-like figure (Fig.l). Motilon in ¥ is possible only on this
segment of the ¢$=-axis, which 1s inside this
f,)z figure. Its positlon relative to the ¢ -
= axls 1s determined by the magnitude of the
constant o , 1.e. by the initial conditions
of the motion, while 1its shape and size
2 | C3 depend on the parameters a4 and v . When
v = 0 (which corresponds to the rotation of
fi the flywheel only about the z-axlis of sym-
G 2] metry of the body), the curves f, () and
f2 (8) coincide, 1.e. the plane figure dege-
— \ nerates into a single line., In this case,
Cs ' o the carrier will execute a regular preces-
et L1 L4 sion, and
60 ! ’ 1 1 c—an\
& mﬁ:ﬂi(m“—a*)

When v = #r (1.e. the projection of the
Fi 1 kinetic moment of the flywheels on the z-
g axis is. equal to zero), the curves f, (&)
and f, (#), and consequently the figure and
the whole pattern of motion of the z-axis of the body, become symmetric with
respect to ¢ =mn /2. In general, as seen from Fig.l, depending on the number
and distribution of extremas of the functions f; (#) and f, (9),the region of
posgihle motions of the z-axis in ¥ may consist eéither of one strip
¢, <8P, or of two strips §, <O <<V, and €&, <P, To show the
Influence o} the parameters a¢ and v on the shape and position of the
figure, we shall investigate the function f,(9®). Its extrema are given by

a sin 28 = sin (& - v) (2.3

Investigation of solutions of this equation for various ¢ and v 1is
best performed by analysis of graphs representing its left- and right-hand
sldes by separate sine curves differing from each other in amplitude, phase
and frequency. Uslng such a graph 1t is easy to establish that, depending
on the values of ¢ and v , (2.3) can have elther one or three roots. In
the 1imiting case when the sine curves are tangent to each other, (2.3) has
two roots. To find the position of this limiting curve on the parametric
ay-plane, we shall denote the values of & , v and ¢, corresponding to the
condition of tangency of the sine curves, by G, , v, and ¢, Then, assuming
that at the tangent point the derivatives of both sine curves are the same,
we have
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a4 8in 20, = sin (&, +v,), 2a, €08 20, = cos (O, -+ v,) (2.4)

Eliminating ﬁ*, we can obtain the explicit equation of the boundary line,
although in case of numerical computations, parametric representation of

this line .
i s sin (84 1 Vo)
tan v, == tan®Q,, a, = TV

(2,5)

1s more convenient.

Fig.2 shows this line T , dividing the parametric av-plane into the
regions corresponding to one root of (2.3) (non-shaded region) and to three
roots (shaded regions). Coordinates of the series of points of this line are

v, =0° 0°47"  2°45"  10°53" 30°35 45° 59°24° 79°04° 87°42" 90°
la,|=0.5 0.5249 0.6016 0.7578 0.9577 4.0 0.9578 0.7576 0.6028 0.5

Two roots of Equation (2.3) correspond to the points of transition from
one region to the other. By the second condition of (2.1) we can assume
that the right-hand side semi-plane of the av-plane characterizes the func-
tion f; (¥), while the left-hand side, the function f, (%), . Therefore, the
extrema of these functions are given by the points distributed in the left-
and right-hand side semi-plane symmetrically with respect to the ag-axis .
Fig.2 also shows that the function f, (#) can have three extrema only, when

¢ < - 0,5, while for f,(9) the correspond-
ing condition is, that & > 0.5 . Assuming
further that v 2 O (otherwlse we interchange
LB a £(8) J, and f,), we have dfi/d®>0 when & =0,
14 i.e. the extrema of f (¢) occur in the fol-
lowing order: maximum, minimum and maximum,
while f3{®) will have minimum, maximum and
! minimum (provided all three exist).

The question whether max f;>73(0) is of
as the major importance to the motion of the

body in ¢ . Obviously, max f= J5(0) is
the boundary case., Denoting the values of
¢ , v and ¢, corresponding to this case

Cyy 5 viy 8nd &,,,, we can write the .cor-
responding relationship in the form

]

<
(S =

R

as
I Gyq S 28 o) — SID (Tgut Vi) =0
! gy SiD? Gyy -0 (B gp + Vaa) — €08 Vyy =0 (2.6)

15 /ﬂ Eliminating *,,, we obtain the equation
of the line 1 dividing the av-plane into
the regions, in which max J> J3(0) and

Fig. 2 max f.< Jo(0) . Obviously, this line. should

. 1ie completely within the shaded region,
since when only one extremum of f, ({) exlsts,
1t has no maximum at all. Parametric representation of this line

2(1— cos By,) _ 8in (Bes 1 Veu) 2

sin28,, °’ #** = "5in 20,, 27)
is convenlent for 1ts construction.

Coordinates of points on this line are

Ve =0° 0°37" 2°20/ 6920 14°33 30°01’ 45° 53°23° 75°55" 84°03° 90° 100°53°
| Byq | =0.5 0.548 0.618 0.735 0.917 4.15514.276.1.299 1.193 1.099 1.0 0.7558

an Vg, =,

From Fig.2 we see, that 1lines I' and 1 have two common points. First
of them 1is, obviously, |a| = 0.5 , y = 0 . The other is easily found by
compaging {2.5) and !(2.7) which, together yleld the following expression
for
2(1 —cos9)

wa? § = sin 20 (2.8)
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Hence © = 120°unv = — 3}/3_; v = 100°53'; |a| == 0.7558. For these values,
point of inflection and the point J/,{0) are at the same level.

Consequently, 1t follows from Fig.2 that the line n separates,out of
the region of existence of three extrema of f, (%) a segment, corresponding
to the condition max Jf,< /,(0) . The behavior of f; (#) is clearly analogous
to that of f, (#) and corresponds only to the condition @ < O .

3. Investigation of phase trajeotories. The Investigation of phase tra-
Jectories 1in the {Np -plane can be performed with relatively little diffi-
culty owing to the presence of the integral (1.16). It should however be barne
in mind, that the general pattern of behavior of phase trajectories corre-
sponding to various values of ¢ , depends essentlally on the region of the
parametric plane, in which the values of 4 and v lile. Fig.3 shows the

v=45] a=l2758 Y=d5] a=115 v=455 a=07%

L/ 4| i ;G
[N ) 41 »
40."” 0 & ad
R AL

=
A7
4

o)
=7

4

Fig. 3

change of pattern of the phase plane when the characteristic polint on the
av-plane is transferred, first, from the reglon above the line n into the
region situated between nw and T , and then into the region situated under
the I 1line (along the straight line v = 45°), PFig.3a constructed for the
values v = 45° and & = 1.5 shows, that the parameter o of the family of
phase trajectories can, in general, assume six critical values. First two
which are ¢,= cos v and qo,= — cos y correspond to the case when angle
can assume the values O or nw . Trajectorles corresponding to these values
of o , represent the dividing lines separating the reglions of existence of
the types of motion oscilllatory in o , from those of the gyratory motion.

In the 1imit, the oscillatory cycles enveloped by the dividing lines degener-
ate into equilibrium points with the values o = g, 8nd o = 05 . Finally,
the remaining cycle has 1ts center defined by the critical value ¢ = o, ,
and its outer boundary is given by the dividing line o = os , consisting of
two branches., Equations of the dividing lines ¢ = ¢, and ¢ = g, are
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L &
= an —— —2 2 -
COS @ = —— 5 (cosv 2 coS 2)
(3.1}
COSQ = ~— At (cosv + 2a sin"*—ﬁ)
08P = ~— v p) 2

Fig.3b corresponds to the case, when the characteristic point belonging
to the parameteric plane, lies on the boundary line I . Here the dividing
lines o = ¢ and ¢ = 5; coincide, therefore the gyratory modes of motion
in g are found possible only in the reglon between the lines ¢ = ¢, and
¢ = ce - In this case, equation of the dividing line ¢ = ¢, coincident
wilth »~ = gg c¢an be written as

- 4 Few [ cOSB,, —cos B
00s g = MT et 2 ( Sii); '&** m—’],) (32)

If the characteristic point is further displaced into the reglon contained
between the NI and T curves (Fig.3c), then the dividing line ¢ = ¢, no
longer encloses the center o = g5, but o = ¢, instead, Center o = og, is,
on the other hand, enclosed by the loop of the dividing line ¢ = ce . As
the characteristic point lying on the av~plane approaches the line TI' , the
loop around the center s = g. becomes smaller, and disappears completely at
the moment, at which the point crosses [ . Phase pattern then assumes the
form shown on the Fig.3d.

We can see from the above figures, that the snail-like figure represents
sufficient means of obtaining the gualitative pleture of types of motion of
the body with respect to the angle ¢ and ¢ . Of course, necessary values
of parameters & and y must be chosen on the ay-plane (Pig.2). In the
number of cases however, determination of the law of motion of the 2z-axls

" of the body in space, 1s also necessary, This is equivalent to finding a
trajJectory described by this axf{s on the surface of a fixed sphere, the cen-
ter of which coincides with the center of inertia of the body. To do this,
we shall write the equation for ¥ , as

. L R (& i) .
L T 5
and shall express the tangent of the angle yx formed by a tangent to the
trajectory of the z-axis and the local parallel to the unit sphere
-y 2 V=h®h® (3.4)
sin & @y (L] AR)sin* 8 + Yo [f1(8) + f2(8)]

From this it follows that tan x becomes equal to zero on the limiting
circles enclosing regions of possible moticns, and becomes infinite, when
ul{u = cos ~),

= Reosv + V{RC—L(1/0+1/A)]2+ R3(cost v — c?) (3:)}

L{(1/C+1/4)

When o = + cos v , we obviously have u # 1 , 1l.e. r~axis of the body
passes through the pole of the unit sphere. We should alsc note that, if
one of the roots of the denominator of the fraction (3.%) coincides with one
of the roots of 1ts numerator, then the trajectory of the z-axis has, on the
corresponding boundary circle, a cuspal peint. Having the expression for
gan ¥ , we can easily obtain the expression for the "curvature of the trajec~

ory
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_ ax _ 1 t d1an ¥, »
T Vi (sin0dv/dopdd 2 (1 tuavyy’: 4O (5.8

Returning to Equation (3.3) we see that, when R = O or v = 0 , the
body exhiblts regular precession. If, on the other hand, L = 0 , then the
body exhibits pure rotation about a fixed axls, and 1ts z-axis describes, on
the unit sphere, a circle of solid angle v . Thils agrees with the results
given in [4],

K

In general, when all the parameters given above are different from zero,
four types of motion are possible. We shall consider them, using the func-

tions f, (8) and f, (8), glven in Fig.l, where L /AR = 0.6, CjA =1,

First type of motlon corresponds to gg< o < 0, When function f, (0.
becomes equal to zero on both, upper and lower clrcles. The values of ¢°
on the 1imit circles, ¥, on the upper and ¢_" on the lower circle will be

. L ARsinvw . L Rsinw
Ve =77~ Hm & Y= 0, (3.7)

Assumlng that L and R are always positive we see, that the velocity
of motion on each of the boundary circles can be either positive, or nega-
tive. The trajectory contained in the strip 1‘}1 < 3 < ﬁé may have loops
and cuspal points {Figs.%a and ).

Second and third type of motion takes place when o;<a<e,, if
4 <O ®, and when < ¢ < 06 If U, < ¥, < ¥, The corresponding

expressions for ¥* are R L Rsinwv . I Rsinvy
T e WS a e, G8)

. L Rsinvy . L fisinv
‘;“* A —%_ sinfdy = A7 Tsin 84 (3'3}

It 1s easy to see that the loops are formed only on the
circles facing the poles of the unit sphere (Fig.4e).

The fourth type will be characterized by the values
\ es< o < gy Or ps< ¢ < ¢, , so that for ¢° we have

"‘ “‘ . L Rsinw . L Rsinv
7, By = ) + sin ¥y b= A + sin 9, (3.10)
where we note the absence of loops on either boundary cir-
b cle. PFinally, in the 1limiting case when o = + co8 vy, the
equations for ¢° and ¥ become
. i1 i\ L Roeosw
¥ *ET%‘T)T— 1 Fcos O

9 = R Vsin®v—(cosvuml/, & —asin®)? (3.11)

We see that the velocity O does not vanish when ¢ = ()
and axis of the body passes through the pole of the unit
sphere without stopping, while the angle 4§ undergoes a dlscontinuous change
of 7 .

The above considerations refer to the motion of the axis of a spindle-
shaped beody, for which ¢ » O . However, using last of the relatlons of
(2.1) 1t is easy to show, that for a disk-shaped body (& < 0), the types of
motion obtained will be identical.

Fig. 4
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4, Integration of equations of motion. In order to integrate the system
(1.19), let us write the quadrature for the angle ¢ , as
S du = SRdt (4.1)
Va“(u; — u)(u — uy) (4 — ug) (u — uq)
The polynomial under the radical sign 1is
P(u)=sin?v(l —u?) —[a(1 —u?) +ucosv—cl (4.2)
By considering the values of thls polynomial at the points u = + 1 and
u = 0 , we can obtain the relations connecting the roots of the polynomial
and the parameters ¢, v and ¢ . They are
a’p; = (cos v — c)?, a*p, = (cos v, + ¢)?, a*p; = (a — ¢) —sin®v
where (4.3)

=0 —u) (1 —u) (1 —ug)(t —uy
Pe= (1 +u)(d+u) (1 + uy) (1 +u)

Ps = Uglgguy (P >0, pp > O) (44)
From (4.3) we find (4_5)
Fig. 5 — —
1—A AV VPl
a=4-—=,co8vV=F+—%—, ¢c= &
where Q Q ' Q
0=V U—p)U—MP+p(+M L2V P (1 —1)
Vet Vn Ve—Va
! Ve—Vn ? Ve+Vn (4.5)
For A we choose the value A, or X, , for which |cos v| < 1 . The

relations obtalned allow us to choose the parameters necessary for the real-

l1zation of a glven type of the carriler.

Let us integrate Equation (4.1). We should note that the polynomial P(u)
is always negatlve when |u| > 1 , hence all 1ts real roots are contained in
the interval — 1 sy =1 (Fig.5). Assuming for example that only two roots
of P(u) are real and, that the motion takes place within the strip u,<usy
we can, using the notation of [5], write the integral of (4.1) as

u
du 1
——— p— F > k [.7
,S‘,Vmu) Vg @0 (47)
—u)Th
P il —w),  p=2 e [ AL
1 i - 2 -_ 2 Y,
P=(m—w)+nt, gr=(m—u 4 nd k:T[(“l “2)pq (r—9q) ]

Here F (¢, k) 1s the elliptic integral of the first kind. Assuming, that
the process of motlon starts at some lnitial value uyo which, in general, is
not a root of P(u) , we have

Y du 1
= — [F (¢he, k) — F (o, k& 4.8
QS%VP—(,;) oz UF (#u b= F (% )] (4.8)
from which we have
sing = sn (v V;a + Fa), cos g =cn (T V}Tq -+ Fo) (4.9)

and finally we obtain
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PUz + quy + (pus — quy).cn (v V pg + Fy)
P+ag+(p—qien{t V pg + Fo)

Solution for the case of four real roots of P(u) can be constructed in
an analogous manner. To find the expllecit expression for the angle y§ , we
must substitute the expression obtalned for wu(T) into (3.3), written in the

form
1 1 cOsSV —¢ cosv+c)

Z‘P':<7+?)L+R( 1—w — 1ru

Then, angle § can be represented as a sum of a linear function 7T and
of integrals of the form

u(t)=

(Fo=F (o, k)  (4.10)

(4.11)

S dv dt
(T T Fg L8 (v F Foy 1 b (4.12)
which can be expressed in terms of theta-function.

In conclusion we shall note that for an asymmetric body, e.g. when
A # B # 0, solution can be represented in an analogous form, if we assume
that u = 0 ,

Indeed, in this case the integral (1.14) will yield

R — Rsinv ' Vaur+ 28u -7
Cosg = (A/JA—14/B)Lsin § 4.13)

Using this to eliminate the angle ¢ from the second equation of (1.13),
we arrive at the following integral for §:

du S
= \ Rdt (4.4
S Vaw toButy Vw18 uty +26 Vaw - Buty (418

R e T

1 1 1 1 1 1
1 = R%sin?v - CL(]——‘—E“)_Lz(T—“E)(T—_AT (4.15)
1 1 1

11
o =15 — ) (7~
'

" = 2R?sinv *-CL(‘;I— - —F>+

}, B":LRcosv{—;( —~F
2(%-—-%) (%-—%—), §" = Rsinv

Here ¢ 1s the constant of integration from (1.14). The integral (4.14).
can, by change of variables, be reduced to an elliptic integral. Assuming
for example that a’> O , we shall use the Euler substitutlon

S
N~

Vawr et r7=Vautr (4.18)
from which, squaring and differentiating we obtain
du dv
- Va o = 5 Ve (4.17)
as & result of which, the integral (4.14) assumes the form (4.18)

dy

5 Ve (02 — 1) + (02— 7)) (3 — N Vay(@ +8" V') + (1" + vd") (B — o Vo)
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Here, under the radical sign, we have a 4-th degree polynomlial, hence all
the transformations that follow, will be analogous to the previous ones. To
f£ind the angle y , it remains to replace, in %4.1]), ¥ by v . This will
result in an integral of the type of (%.12).
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